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Slow oscillations in an ocean of varying depth 
Part 1. Abrupt topography 

By P. B. RHINES 
Department of Applied Mathematics and Theoretical Physics, 

University of Cambridge? 

(Received 6 May 1968 and in revised form 4 October 1968) 

This paper is part of a study of quasigeostrophic waves, which depend on the 
topography of the ocean floor and the curvature of the earth. 

In  a homogeneous, @-plane ocean, motion of the fluid across contours of 
constant f / h  releases relative vorticity (f is the Coriolis parameter and h the 
depth). This well-known effect provides a restoring tendency for either Rossby 
waves (with h constant) or topographic waves over a slope. The long waves in 
general obey an elliptic partial differential equation in two space variables. 
Because the equation has been integrated in the vertical direction, the exact 
inviscid bottom boundary condition appears in variable coefficients. 

When the depth varies in only one direction the equation is separable a t  the 
lowest order in w ,  the frequency upon f. With a simple slope, I Vhlh I = constant, 
the transition from Rossby to topographic waves occurs at I V h  I N hlR,, where 
Re is the radius of the earth. Isolated topographic features are considered in $ 2 .  
It is found that a step of fractional height S on an otherwise flat ocean floor 
reflects the majority of incident Rossby waves when S > 2w. In the ocean w is 
usually small, due to continental barriers, so even slight depth variations are 
important. A narrow ridge does not act as a great obstruction but calculations 
show, for example, that the Mid-Atlantic Ridge is broad enough to reflect all 
but the lowest mode Rossby waves in the North Atlantic. 

Besides isolating oceanic plains from one another, steps and ridges support 
trapped topographic waves of greatest frequency N 812, analogous to the 
potential well solutions in quantum mechanics. These waves cannot carry 
energy along abrupt topography, but they disperse more rapidly over broader 
slopes; the phase and group speeds may be hundreds of cmlsec. The continental- 
shelf waves found by Robinson are an example of the latter case. There are 
many such wave guides, where the f / h  contours are crowded, in the deep ocean. 

The theory suggests that measurement of Rossby waves will rarely be possible 
at the coast of a continent. 

1. Introduction and derivation 
The atmosphere influences the ocean over a broad range of frequencies, from 

those of surface waves to the slower variations of weather and the seasons. It has 
long been realized that an ideal ocean responds differently to weather than to 

f Present address : Department of Meteorology, Massachusetts Institute of Technology. 
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winds that blow without change forever. Hough (1898) showed that the long- 
period solutions of Laplace’s tidal equation for a layer of fluid on a rotating 
sphere are distinct from the more rapid gravity waves. The former, ‘second- 
class’ motions are due mainly to the rotation. As far as these linear solutions are 
valid, they may describe the effects of weather on the ocean; indeed, the weather 
itself is to some extent motion of the same class. 

Longuet-Higgins, in a series of papers (1964, 1965a, b )  has given a thorough 
treatment of these motions (also known as quasigeostrophic, Rossby, or planetary 
waves) on a sphere. He has shown the nature of the superposition that accounts 
for simple lateral boundaries. 

The problem of a fluid in a shaped, rotating basin is somewhat similar. Ball 
( 1 9 6 3 ~ )  b, 1965a, b) ,  has brought to an elegant state the inviscid theory for an 
elliptic paraboloid (the emphasis in most other rotating basin problems has been 
on the ‘first-class ’ inertial-gravity waves). The spin-up problems of Greenspan[& 
Howard (1963), Greenspan (1964, 1965) and Holton (1965) are in some ways 
directed to the same end. Ekman-layer suction may bring the fluid to the speed 
of its boundaries in a simple manner, but often waves are excited of which the 
second-class modes are a subset. 

The model oceans considered previously have had smooth and simply shaped 
boundaries. The lack of firm evidence of Rossby waves leads us to include an 
irregular bottom (the importance of complex coastal boundaries is also worthy 
of study). 

In this paper we consider abrupt topography, finding its effect on Rossby 
waves over an otherwise featureless bottom, and describing the new oscillations 
that it induces. In  a later paper a continuously rough bottom will be included, 
and modifications due to density stratification discussed. 

The ideas of potential vorticity and the P-plane approximation provide a feel 
for the motions. In the absence of non-conservative forces, fluid in a thin layer 
on a sphere satisfies 

or 

away from the equator. 5, h and f are the radial (vertical) components of vorticity, 
depth and twice the earth’s rotation vector, 8, respectively, u is the horizontal 
velocity, and DIDt includes the horizontal advection. Large scale, low frequency 
motions involve coherent columns of fluid with axes parallel to 8 (although for 
a thin layer the difference between Taylor columns parallel to 8, and radial, is 
insignificant at  mid-latitudes). Slight gravitational stability in the fluid sup- 
presses the horizontal component of 8, however. The columns then are radial; 
a layer for which H / L  < f / N  < 1 where N is the Brunt-VaissBla frequency, and 
L the horizontal scale, is otherwise ignorant of the stratification. 

If now the spherical shell is mapped locally onto a plane, with Cartesian GO- 

ordinates (x, Y) oriented east and north, respectively, the dominant effect of 
sphericity away from high latitudes is in the y-dependence off,  and we may 
neglect the convergence of the meridians for waves much shorter than the earth’s 
circumference. Rossby ( 1939) introduced this great simplification, which has 
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since been examined thoroughly by Veronis (1963), Rattray & Charnel1 (1966) 
and Longuet-Higgins (1964 et seq.). 

From this simple expression of the problem we can see that variations in either 
f or h provide gradients of x with the fluid at rest; then movement through 
changes either in depth or in latitude releases relative vorticity, altering the 
motion. The similarity of the second-class modes on a sphere and in a basin has 
been exploited by many workers, for example von Arx (1957), Fultz & Kaylor 
(1959), Phillips (1965), Pedlosky & Greenspan (1967) and Beardsley (1968), and 
provided striking laboratory demonstrations of oceanic and atmospheric 
phenomena. 

FIGURE 1. Contours off/h (‘isostrophes’) for the North Atlantic. The contours are separated 
by 4” of latitude at  h = 4000 m (the numbers refer to this base). They are thus slightly 
bunched together in the north. Many closed contours, and all contours north of 60” N, 
4000 m, have been omitted. 

The place of second-class motions over a slope in the general scheme of rotating 
fluids was clarified when Phillips (1965) showed that they are simply a shallow- 
water subset of the inertial waves that cover the spectrum w = a/f < 1 (a is the 
radian frequency). 

The idea of geostrophy is fundamental to this type of motion. If variations with 
time and space are gradual enough (o 4 1 and E ,  the Rossby number, 
= UlfL  < 1, where U and L are typical horizontal velocity and length scales, 
respectively) the momentum equation is dominated by the ‘geostrophic ’ 
balance between pressure gradients and the Coriolis force. The slight departures 
we are interested in are known as quasigeostrophy. Most of the present work 
falls under this heading since w N LIR, for Rossby waves, where R, is the earth’s 
radius, and this is usually small because of continental barriers. It will be shown 
that waves due to small departures from a uniform depth also satisfy o < 1. 

11.2 
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If we set w = 0 and say that E is small (care is dictated, since the limits w + 0, 
e + 0 are singular), the above equations show that streamlines lie close to con- 
tours of f /h .  This solution was given by Lamb (1932, p. 333), and may describe 
much of the deep, steady circulation pattern of the ocean. 

1 and s/w < 1. When the 
depth is constant the contours of the restoring agent are latitude lines, but in the 
real ocean contours of flh,  which might be called ‘isostrophes’, are badly dis- 
torted. These are plotted in figure 1 for the North Atlantic. 

The chart was prepared from a Russian topographic map, published in 1963. 
It was severely averaged and many ‘islands’ (closed contours) left out to make 
clearer the general pattern. Since the ‘islands’ tend to trap both steady and time- 
dependent motions, a more accurate chart would be of interest. The dynamical 
effects of roughness and of large features like the Mid-Atlantic ridge are hinted 
at;  we suspect that many scales of Rossby wave will be altered in character. 

We are not alone, since many authors have cited the probable importance of 
bottom topography. The only paper that deals with the problem, however, 
appears to be that of Robinson & Stommel (1959), who calculated the first 
perturbation term for small depth variations. This approach will be discussed 
in a later paper. 

We now derive the appropriate form of the equation, listing in a more orderly 
fashion the assumptions. The momentum and continuity equations for long- 
wave motion of a homogeneous, inviscid liquid are, in a rotating system on a 
P-plane, 

Our interest is in the linearized waves for which w 

(1.1) i ut-fv = -gvz,  

vt+fu = -gv,, 

Tt + (W, + (W, = 0, 

where the pressure, assumed hydrostatic, is 

1, = Ps=?)+PS(T -2) 

and f = fo+/3y, p is the density, g the acceleration due to gravity, u, v, to and 
x, y, z are the eastward, northward and upward velocities and co-ordinates, 
respectively, and y is the elevation of the free surface. With time dependence 
cc e-igt, elimination of u and v gives 

With the restriction u < f, this becomes, in vector form, 

- V . ( h V v ) - r V v A V - . f c - - q  1 h f f2  = 0 + 0  
h ZU h gh 

fc is a vertical (radial) unit vector. At a rigid vertical boundary with normal n, 

& A V y . n = O + O  - . (2 
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The limit g- t  03 gives another possible equation, for then continuity is satisfied 
identically by a stream function for the mass flux, 

fAv$ = hU. 

The equation is found by eliminating q from (1.1): 

( 1.3) is rigorously correct with a rigid lid, and the inviscid condition at  a vertical 
wall is simply $ = constant. It has the advantage that the eigenvalues {a,} 
corresponding to {$J in a closed basin are real, while those corresponding to 
(q,), equation (l.2), are not. It is often desirable (in numerical computations, 
for example) that conservative equations remain so in spite of approximations. 

Both (1.2) and (1.3) are vorticity equations. The added term in (1.2) represents 
the stretching of vortex lines by the free surface motion. For the surface to act 
rigid more is required than qt < V .  (hu) in (1.1); flows may be dynamically 
divergent, yet kinematically non-divergent. In  this case, if f2L2/gH < 1, the 
stretching term is negligible and the equations equivalent. They are not identical, 
but may be obtained from one another, to O(a/f), by substituting 

The implicit assumptions we have made are: (i) The non-linear terms are 
negligible. This requires that slw < 1, where w = v/fo and 8 is based on averaged 
deep-ocean velocities. With w small this is a more severe constraint than just 
geostrophy. It implies that fluid columns are not carried across the topography 
of interest during a period of the wave (see also page 183). (ii) The /3-plane is valid. 
Topography tends to reduce the scale of the motions at  a given frequency, and 
hence to improve this approximation. (iii) The horizontal component of G! is 
negligible. This is dictated by the large scale and presence of stratification, away 
from the equator. (iv) The stratification may otherwise be neglected. This is not 
always true, and will be discussed in a succeeding paper. (v) The horizontal 
velocities are independent of z. Rotation improves this traditional long-wave or 
' barotropic ' assumption. Consider, for example, the error in the horizontal 

vorticity equation: - ia(w,- wy) +fU, = 0. (1.4) 

Equation (1.3) shows that w is unusually small in a quasigeostrophic balance, 
for w/U - wH/L,  while long gravity waves have much more horizontal diver- 
gence wllJ - HIL. Hence (1.4) shows that the non-dimensional shear of the 
horizontal velocity is 

if v - u. This is very small even when HIL  N 1. (vi) Viscosity may be neglected. 
The application of simple quasi-steady Ekman theory, for small bottom slopes, 
implies that the motion decays exponentially, but without regard to horizontal 
scale. The spin-down time for the ocean, H/(v f ) J ,  would be about a month for 
barotropic motions, if the eddy viscosity were taken to be unity, but we do not 

( H / U )  U, - w ~ ( H / L ) ~  
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really know the nature of the turbulent lower boundary layer. The action of the 
tides (perhaps the largest velocities present at the bottom) in dissipating these 
motions has been considered by Groves (1965). 

2. Depth variations in one direction 
When the contours of depth are straight, the problem on a /3-plane is separable 

a t  the lowest order in w .  Let us take the simplest case, when h is a function of 
latitude onlv. Then 

ri 

.To R = - =Retan@, 
P 

where @ is the latitude at which y = 0. The relative magnitudes of the terms are 
indicated. The horizontal scale of $ is L, that of the topography is a, and 
h,/h > &/a = M .  

The second term may be neglected with error of order M L ,  NU, if the topo- 
graphy dominates (if the first and fourth terms balance), or - wMR if the /3-effect 
dominates (first and third terms). Thus depth variations are much more import- 
ant in the horizontal divergence than in the vorticity term, reminiscent of the 
Boussinesq approximation. It also appears that the relative importance of 
topography and the /3-effect is measured by MR.? 

The variation off (the fifth term) is 5 L/R( 5 w ) .  Hence with errors of order 
5 w (or, it turns out, 5 a), these two terms may be neglected.Veronis has pointed 
out to the author (see Veronis 1966) that a fallacious growth of the solutions with 
time may appear when the straight contours cross latitude lines, iff  is held 
constant. The two approximations cited hers, taken together, produce red  
frequencies for any bottom configuration, however, and give a consistent repre- 
sentation if the change in depth over a wavelength is small. Again, it is often 
desirable to deal with equations that remain conservative in spite of approxi- 
mations. 

For motions sinusoidal in x, (2.1) reduces to 

V , =  
w h  

We now set f = fo (the second approximation) but retain V (l/h) . V$ to demon- 
strate the accuracy of the first approximation. 

t These arguments are somewhat limited, however. For long waves over ‘roughness’ 
( L  $ a)  the parameter turns out to be M R  (u/L) due to cancellation between positive 
and negative slopes. 
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Simple slope 

When h,/h = M ,  a constant or exponentially varying depth, the solutions are 
plane waves modulated in amplitude by h4. The dispersion relation is 

w = ( [ 1 / R ] - M ) k / [ k 2 + 1 ' + M 2 / 4 ] ,  (2.3) 
where $ = h*exp[i(kz+Zy)]. 

For the shorter waves the influence of the slope appears in parallel with 1/R, 
which is thus modelled by a bottom shelving to the north. The contributions 

I I I I I I 
22,000 2200 220 22 2.2 

Wavelength (km) 

FIGURE 2. Dispersion relation for waves on a slope, k = 1, for various M R  ( M  < 0); 
M R  = 15 corresponds to a slope of about in the deep ocean. The curves are dashed 
where the approximationf = f,, begins to  fail. R = 6-4 x lo8 cm. 

are equal, in the deep oceans at mid-latitudes, over a slope of only about 
Figure 2 shows how the frequency of a wave with crests inclined at 45' from east 
depends on wave-number and slope; the typical waves over a slope are much 
shorter than Rossby waves. The singular nature of the limit w+O should be 
apparent from this solution. The streamlines need not become tangent to the f / h  
contours, for the scale of the derivatives can balance the smallness of w.  

The curves in figure 2 are dashed where the approximation f z f,, begins to 
fail at  mid-latitudes. For f to vary little over the wave scale we require 1R 9 1. 
At CD = 45" this implies that 1-1 < 7600 km. Near the equator the situation is 
worse. At @ = lo", Z - l <  1250 km; that is, the wavelength must be much less 
than 5500 km. The solution fails, for example, in the gradually shelving Eastern 
Pacific Basin, where the slope is comparable to HIR over a vast region: 
variations in f will affect long waves there. 

The highest frequencies occur at  
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They describe waves for which the depth changes by a large factor over a wave- 
length. Since we shall usually be interested in the right-hand sides of the curves 
(the lower frequencies) we shall often neglect M2/4 in the denominator of (2.3). 
This is equivalent to the first approximation mentioned above. In  the diagram 
showing possible wave-numbers for a given frequency (figure 3) the approxima- 
tion would move the circular locus tangent to the Z-axis through a distance of 
order w2(MR)2/(1 + MR). 

- 1  
2 WR 

k 

~ 

FIGURE 3. Locus of wave-numbers at  a given frequency, depth contours east and west, 
plotted for M R  = -7.5, w = 0.1. The small circle, for M = 0, describes Rossby waves. 
The large circle is slightly to the left of the Z-axis. 

When the straight contours of h do not run east and west, those of f / h  are no 
longer straight and we make both approximations. Taking h = h(q), where 

cos a sin a (i) = [ -sina cosa] (i) 
are co-ordinates rotated from north and east through an angle a, the equation 
becomes 

where k2, 

y9 = $(~)exp{i(kE- (sina12wR)~)). 

If the bottom slopes upward to the west, (2.4) with h,/h = M < 0, a = $ 7 ~  

gives for the dispersion relation 

R-2 + M2 
( l + & J +  (k-:)l = 4w2 ’ 

with @ = exp{i(k<+ly)) ([, k now refer to north). The frequency for the case 
k < 0, I = I k ( 1  is the total 7 wave-number) is plotted in figure 4, against 1. 
The p-effect reinforces the wave with a component of its phase moving west, 
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raising its frequency, and detracts from the frequency of the eastward moving 
wave. 

Since M R  is the measure of topographic effects with a smooth slope, it appears 
that an ocean of scale L, with a bowl-shaped bottom, will be dominated by topo- 
graphy if only LIR 4 1 (since MR N RIL). Many ocean basins of course have 
steep sides and level (but often rough) interiors: these are another problem. 

Id 

- 20 - 10 0 10 20 

1R 

FIGURE 4. Dispersion relation for an upslope to the west; E < 0, 1 = f Ikl. M R  is the 
relative measure of the slope- and p-effects. 

Abrupt topography; rejexion from a sloping step 

The form of the one-dimensional equation suggests an analogy to quantum 
physics. If E, is the energy of, say, an electron passing through a steady potential 
field, G(q),  its wave representation is found from the Schrodinger equation (2.4). 
The frequency in our problem, however, appears in a more difficult position than 
does E2, so the eigenvalue problems do not correspond simply. When a plane 
Rossby wave incident from 7 = - co comes upon a ridge of infinite extent in the 
<-direction, the slopes cause V, to be locally much greater than E,. $ will then 
oscillate or decay rapidly in space, depending on the sign of E, - V,, and this 
local behaviour presents a high impedance to the external field. Balancing this 
adverse effect on the passage of the wave, however, is the great wavelength in 
the exterior, which will tend to let it tunnel past. 

If h(7) has the form of a rounded step the analogous potential has the even 
form of a well or barrier. When V, oc tanh2y [h cc exp (tanhq)] (2.4) may be 
reduced to a Legendre equation (see Morse & Feshback 1953). The detailed 
solution in hypergeometric functions is known (by a generation of physicists) to 
justify the simpler approach of matching solutions with broken-line profiles of 
V,, for long waves. We thus find that the normal and tangential velocities, 
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proportional to I,$ and I,$,,, are quantities to be held continuous at a discontinuity 
in slope, as we should expect. 

Consider a wave incident from the south on a atep running east and west, with 
its face sloping between 0 < y < a (as in figure 5) .  Taking account of the radiation 
condition beyond the step, the form of the solution is 

I,$ = Alei‘v+Aie-iz” 

= A,efi”+Abe-fiv 

(y < a ) ,  

(0 < y < a ) ,  

(Y ’ 4 ,  = A ,  eilv 

where 

/ / / / / I  

- ? q / / / /  I I I / / I  

y = o  Q 

FIGURE 5. Form of the sloping step. 

k 
~2 = --12--M = V - E ,  

0 

M = h , s ! .  
h a  

R(P) is the total stream function and S the net fractional change in depth. The 
group velocity of the incident wave must be directed towards the step, that of the 
transmitted and reflected waves away from the step, and therefore 1 is negative. 

The matching of velocities at  y = 0 ,  a gives 

A , + A ;  = A2+AH, 

iz(Al-A;) = p ( A , - A ; ) ,  

A2efia+ALe-fia = A3eila, 

p ( A ,  eP‘ - A; e-PU) = iZA 3 eila. 

It follows that the fraction of the incident energy transmitted is, to order 8, 

= [ 1 + ~ ( ~ + ~ ) z s i n h 2 p a ] - 1 ,  4 1  P 



Slow oscillations in a n  ocean. 1 171 

which is plotted in figure 6, for M > 0,  1 = k (the step falls to the north). For a 
given incident wave, at 45" to the slope, say, and fractional change in depth, 6, 
TI varies little with the width of the step until (w/S)  ka N 1. 

0.25 c / -1 
I I 

10 0.1 lo2 lo3 

a (W 
FIGURE 6. Transmission across a sloping step, as a function of its width; h = h(y), M > 0, 
k = I, @ = 45". - - -, w = 0.1, T = 7.1 days (wavelength 5700 km); _I , 0 = 0.025, 
T = 28 days (wavelength 1400 km); -.-, w = 0.01, T = 71 days (wavelength 570 km). 

1 2 3 4 

81 0 

FIGURE 7. Effect of direction of incident wave on trmsmission across m abrupt step. 

If M < 0 the step rises to the north and the potential 'barrier' becomes a 
'well'; in this region the eigenfunction always curves towards the zero axis. 
With p .+ il, in (2.5) TI oscillates as a function of the step width, a, between the 
values [1+ t(&/l] + [Z/,U])~]-~ and one. This latter limit, representing perfect 
transmission, occurs when an integral number of half-waves fit in over the slope, 
so that no reflected wave is needed in the matching. In physics the analogue for 
centred scattering is called the Ramschauer effect. Near these wavelengths there 
are occasional resonances in which the long-slope velocities are much larger than 
any exterior velocity. 
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Abrupt step 
Since Rossby waves are so long, the limiting value for pa -f 0 will usually be 
applicable. For either well or barrier this is 

T1= [ 1 + -  : (:;)"I" -- (2.6) 

for (w/S)ka < 1. 
If the step lies a t  an angle a with respect to east, k and 1 refer to (6,~) co- 

ordinates and 
k2. 

sina kcosa 12= __ 
(2oR) wR 

Relation (2.6) is plotted in figure 7 to show the effect of the direction of the 
incident wave; the step is a directional filter for Rossby waves, passing only those 
with crests at an angle of less than tan-l (S/o) from the depth contours. Clearly, 
a wave with velocities paralleling the contours will have no horizontal divergence 
forced upon it and suffer no reflexion. 

In  the limit of long waves Tl may be found directly by integrating (2.4) across 
the step to give a matching condition for the long-slope velocity, u. For a small 
step at  7 = 0 this is 

[.I:' = [$?)I:: 

S 
= -v(O), 

0 

where the upslope velocity, v, is continuous. The change in ZG could take place 
over 100 km and yet look to a long Rossby wave like a sheet of vorticity. For a 
typical wave with v N u in the exterior, large S/w forces v(0) to be almost zero; 
the step then acts like a rigid wall. The time-dependent vortex sheet could not, 
by Kelvin's theorem, exist in a flat-bottomed ocean, but here the change in 
depth releases relative vorticity in order to conserve potential vorticity. The 
explanation, in terms of momentum, is that fluid forced up the slope alters its 
velocity, by continuity, and hence feels a stronger Coriolis force deflecting it to 
the right. 

This argument leads us to expect that, even whenf changes substantially over 
a wavelength, or when the step is not uniform, there will still be a barrier if S/w 
is everywhere greater than one. 

This limit of an abrupt step gives us another result of interest, for we may find 
the effect ofa step of arbitrary height. The full equation may be integrated across 
7 = 0 since @ changes much more slowly than h. This gives 

[w];' = [?I0+ = k$(O) 7 Ih]  1 Of 

0- 0- 

for the strength of the vortex sheet. With, also, 
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the matching equations determine the energy transmission : 
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where D = h( 0 - )/h(O + ) andf is still treated as a constant. 
As expected from (2.6), unless k/E is small, virtually no energy can penetrate 

into a region for which 6 ( = D - 1) is of order unity. In view of our interest in 
finding Rossby waves in surface-elevation measurements over the continental 
shelf, we should keep in mind a result for long gravity waves in the same situa- 
tion; as 6+ 1 the transmitted amplitude over the incident amplitude goes to 2.0 
though the energy is almost totally reflected; the transmitted wave is measur- 
able. The ratio of surface heights for Rossby waves, however, is 

as D -+ co. The attenuation will thus make observations at  a coast a poor repre- 
sentation of abyssal motions. When the shelf inside of the rim rises moderately 
to the coast (say h cc 7) the surface motion does not vanish as it would next to a 
vertical wall but reaches a finite maximum. Those waves that do manage to 
penetrate the rim might thus be measured by tide-gauges at the coast. 

Regions of different mean depth should, in general, begin to be isolated from 
each other when S/u IU 1. The North Atlantic at  the latitude of the British Isles, 
for instance, will not feel Rossby waves on the deeper plains to the south. 

Rejexion from a ridge 

Since the lengths involved are great it is natural to wonder how other, nearby 
changes in depth will affect this result. The step is, in fact, an atypical example of 
an isolated feature because it is really the line of separation between regions of 
different quiescent potential vorticity. 

We therefore consider waves incident on a ridge of infinite length that rises 
out of a flat plain. The corresponding V now represents a well followed (or pre- 
ceded) by a barrier. The integral of this potential vanishes and so the same 
arguments that predict reflexion by a narrow step, alone, show that the combined 
effects cancel, leaving the narrowest ridges transparent; it is the net change of 
depth that counts. 

Consider the abrupt ridge of finite width given by 

h = H  (7 ' a, 7 < 0) 

= H(1-6) (0 < 7 < a) .  

We expect physically that the reflexion of a long wave will require the strength 
of the 'net' vortex sheet, 
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to approach unity, where the typical external velocity is U .  Each individual 
sheet is driven by the local upslope velocity, v, so 

The separation must be great enough for the v's to differ. 

strong (6 /w  
If the reflexion coefficient, R, is assumed small, but the sheets individually 

1) and the ridge narrow (ka 4 l) ,  then 

I v(a) - v(0)  I = a%, q 

= a%, 5 

= kau,, 

where v,, u2 are typical velocities over the ridge, and with variation K eike along 
the ridge. 

Now u2 % [.I:' 

because [u]:' $ U assuming the reflexion weak (such intense velocities did not 
appear over a step, except in the unusual resonances of the 'well' profiles). The 
change in v, which is also proportional to the change in g7 is thus 

v(a) - v(0) % ka(8/w)v(O). 

It follows that the net strength is 

for an obliquely incident wave, and it is inconsistent to predict R 4 1 if this 
approaches unity. Although the reflexion is thus greatly reduced, S/w is often 
large enough for it to be significant. 

By matching solutions for the abrupt ridge we find, in fact, 

T = 131 = [1+2y(y+1) (1 -~0~2Zu) ] -~ ,  

4 w l  

A 2  

3- , A ,  
y = 1 (< !)2, 

which indeed depends on the above parameter X for ku < I .  

A ridge of finite Zength 

The derivations above require that the topography extend many wavelengths 
along its contours without change, but the vortex sheets will still appear when 
a ridge is terminated at a length, D, many times its width, even if both dimensions 
are much less than a wavelength. If, in the argument leading to (2.8), we say that 

u ~ I L 7  
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where L lies between D and the wave-scale, k-1, we have an estimate of the 'net' 
vortex sheet: 

This shows the surprising tendency for the response to be stronger if the ridge 
is of finite length. The topography will begin to scatter waves as strongly as the 
vertical walled island formed by its circumscribing cylinder when S approaches 
one. 

The change in $ or pressure between front and back will cause a periodic 
vortex-like secondary flow at  the ends of the ridge. Similar, but steady, regions 
of vorticity appear at  the tips of aeroplane wings due to the pressure drop in the 
primary flow between top and bottom. 

FIGURE 8. f/h contours for a north-south ridge with triangular cross-section. Themaximum 
southward displacement of a contour is R6. 

Triangular ridge 
Actual topography is usually less abrupt than the models used above. We 
therefore solve, again by matching velocities at  discontinuities in slope, for the 
transmission past an infinite ridge with a smoother, triangular cross-section and 
small height: 

h,/h = -S/u (-+a < 7 < 0), 

= +S/a (0 < 7 < $a) 
(theflh contours for this model are shown in figure 8). This gives six simultaneous 
equations for the six unknown amplitudes of waves in the four regions. 

The result for the transmitted energy is 

la cosh (pa) cos (aa) - sinh (pa) sin (aa) 

l a 1  
4 l a  + - [ (-+ -) cosh (pa) sin (aa) + sinh (pa) cos (aa ) I2] ' ,  
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where I ,  a and ip are the 7 wave-numbers of the exterior, and the two interior 
regions, respectively: 

l2  = - k2 - k cos alwR + (sin a / 2 ~ R ) ~ ,  

a2 = l2 + Gk/wa, 

p2 = - l2  + Gklwa. 

When p2 < 0 (wave-like solutions in all four regions) T4 holds with p = i I p I. 

' // / 

O . O I  0 I I I I I I I 

0- 1 0.2 0.3 

6 

FIGURE 9. Transmission past a ridge: the frequency of marginally reflected waves (for 
which 2', = 0.5) is plotted against the ridge height for several half-widths, u (solid curves). 
The same relation is also shown for sloping steps of the same characteristic height, and of 
width u (dashed curves). 

T4 decreases monotonically with increasing half-width, a, or increasing 6, 
within the interesting range of values. The results are summarized for a ridge 
running north and south in figure 9, where the critical frequency at  which T4 = 0.5 
is plotted against 6 for several a. The incident wave is always taken with its group 
velocity at 45O to the ridge (k = Z), which causes neither the strongest nor the 
weakest reflexion. f corresponds to 35" north latitude. T4 generally becomes quite 
small when a good fraction of a wave (over the dope) is contained within a 
distance a: higher-frequency (longer) waves are transmitted. The earlier 'narrow- 
ridge' estimate (2.8) applies here only when ( 6 / w )  ka < 1 (T4 then depends upon 
the same parameter). The critical frequency it gives varies like So(a/R)*, which 
in fact describes the whole range of figure 9 surprisingly well. 

For k = 1 the wavelength corresponding to the critical w can take on two 
values, depending on the sign of the westward component of group velocity. The 
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ridge is thus a greater barrier to waves of given scale generated to its east, than 
to its west. 

It is interesting to compare the results, plotted with dashes, for sloping steps 
corresponding to the first half of the ridge. These are close to the 'abrupt-step' 
value, w, = 6/(2 + 6). With a = 100 km, the steps are the more effective barriers, 
but with wider profiles the ridge is more effective for small 6, and so the cancella- 
tion of the vortex sheets is not always serious. There is, however, a clear tend- 
ency for higher ridges to be less obstruction than the corresponding steps (the 
dashed lines may be extended almost straight as 6 increases but the ridge deriva- 
tion is not valid for 6 of order unity). 

Applications 

The earth's surface has evolved on a scale so large that these results should find 
application in spite of the one-dimensional profiles used; the Mendocino Escarp- 
ment in the Pacific is a good example of straight contours. 

Perhaps the most prominent topographic feature to be found in the oceans 
is the Mid-Atlantic Ridge and its continuations that snake over 40,000 miles 
of the surface of the earth. These calculations show that it is massive enough to 
affect most of the long Rossby waves in the Atlantic. The ridge ranges in fractional 
height from 1 at the Azores to about 0.35 at 15"N. Smaller ridges, for which 
these results are valid (say 6 = 0.15, a = 750 km, 35" N), reflect a majority of the 
energy in waves for which w 5 0.1; that is, wavelengths 5 7000 km (group 
velocity to the west), or 5 3000 km (group velocity to the east). The decrease in 
f with latitude should be at  least compensated by the greater 6, down to about 
15"N. The basins on either side of the ridge should thus support their own 
normal modes, without communication between them. The fundamental mode 
in the Atlantic, however, should be unaffected by the lower parts of the ridge, 
although the region of the Azores will distort it somewhat. This effect more 
resembles centred scattering, which will be treated below. 

Pedlosky (1965) gives an interesting comment on the importance of Rossby 
waves, which is relevant here. In  an ocean of constant depth, energy is carried 
efficiently to the west by long waves. They are reflected, however, as short waves 
(whose group velocity is to the east), and these tend to be damped by friction 
before reaching mid-ocean. The western edge of the ocean thus tends to be a sink 
of quasigeostrophic energy, and should be the site of much time-dependent 
eddying (see also Phillips 1966). The frictional Gulf Stream is the result of the 
low-frequency limit of this argument. 

For the same reason the eastern edge of the mid-Atlantic Ridge should support 
strong eddying, in regions where the adjacent abyssal plain is smooth enough for 
Rossby waves to propagate. 

3. Wave trapping 
In  figure 1 there are regions, dense with contours, that are coherent over long 

distances due, for instance, to the continental rises and Mid-Atlantic Ridge. The 
earlier demonstration that a sloping step sometimes acts as a potential well 

Fluid Mech. 37 12 
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suggests that, as well as reflecting external waves, such profiles might support 
internal reflexions, preventing forced motions from escaping the region of the 
slope. 

Abrupt step 

Over a sloping step a whole family of oscillations exists with frequencies that 
decrease as the change in phase between the edges of the step increases. For 
simplicity we first limit our attention to the ‘lowest ’ mode, a wave much longer 
than the width of the step, a, which has no nodes parallel to the contours. In  this 
limit the slope may be considered impulsive, lying along q = 0. First setting 
p = 0, but including the term formerly neglected in the vorticity, V( l/h) . V$, 
the equation is 

where A(q)  is the delta function. The solutions are tent-shaped, 

$ = eklvl (k < o), 
for v2$ = 0 

where y $. 0, and continuity requires that 

$ ( O + )  = &O-)*  

The strength of the vortex sheet is, again 

[; $,T+ 0- = ; $(O) [;lo+. 0 -  

We find, for an arbitrarily high step, 

d 
2+6 

w = - sgn (k), 

where 

w > 0 by definition, and so the phase always moves with deep water to the left. 
The frequency is thus independent of the scale of the motion, and of the form 

of its 6 dependence; in this limit energy cannot be guided along the step. 3’ L ince 
the scale k-1 can be as small as the depth of the ocean, the frequency should reveal 
the local topographic height. When 6 is a t  all substantial the frequency will be as 
high as that of the longest Rossby waves. 

The surface has been taken to be rigid, so that gravity is irrelevant to the 
solution (this is not a Kelvin wave). Free surface motion is in fact of no dynamical 
importance iff 2/gHk2 is small. With H = 3 km this requires only that the wave- 
length be much less than 11,000 km, which it will be in most cases of interest. 
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Inclzcsion of the P-eflect 

The strong topographic restoring force is embedded in the weaker, but extensive, 
field due to p. As the scale k-l increases to that of Rossby waves of the same fre- 
quency, = f / R  must eventually become important. We choose waves that 
vanish at 7 = & 03, eliminating the Rossby waves already treated: 

@ = exp ( - I r ]  1 )  e=p (iE+ 171). 
The matching conditions across a step aligned in the &Xrection, at  an angle a 
from east ( -  +T < a < +n), are as above. The equation for the exterior, r] $: 0, 
gives sin a I = -  

2oR ’ 

With the matching condition 
A(&+ 2) = - (k /o )6 ,  

we have 
2kR 

which is plotted in figure 10. The sign of the radical has been chosen to make 
h > 0. With the convention w > 0, always, k has the same sign as 6, and the 
phase again moves with deep water to the left. 

To understand the interaction of the two effects we consider the possible 
orientations of Rossby waves with frequency 6/(2+6).  The locus of wave- 
numbers is, of course, a circle just to the left of the 1 axis in (k, I )  space. 

Letting the length scale of a purely topographic wave increase, we see that the 
first Rossby waves encountered (the shortest) are directed due west and expect, 
for 6 < 0, that this will reinforce the westward component of phase velocity in 
topographic motion, raising the frequency. For 6 > 0 the purely topographic 
wave has phase moving with an eastwards component. The competition with the 
Rossby wave of the same scale lowers the frequency at  first. As the scale increases, 
however, with frequency still near 6/(2 + 6), the Rossby wave-number swings 
about its circular locus until eventually it has a component in the other direction 
along the ridge. The two effects can then combine, and the frequency increases. 
The exceptional cases are a = in, where the phase moves north-south, and the 
curves for 6 < 0 and 6 > 0 are symmetrical, and a = 0, 6 > 0 where projection 
of the Rossby wave’s phase can never move eastward along the step, and the 
competition continues to the end. 

The form of the waves is shown in figure 11. The nodal lines move obliquely 
to the step in general. As k+ 0 the tent-shaped envelope of $ raises itself and 
becomes flat, and the vortex sheet becomes insignificant. The limiting Rossby 
wave has 1 sin a _ -  

k -  & l - C O S G  

= -tan&a (6 > 0), 

= cot &a (6 < 0). 
12-2 
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6 < 0  

0 1 2 

I I 

-2 -1  
KRb 

FIGURE 10. Effect of /? 3 f / R  on the dispersion of trapped waves. For 6 < 0.1 only those 
longer than N 6 x lo4 km are affected. k is the wave-number along the step. 

FIUTJRE 11. Form of $ and the free surface for the oscillations due to a step 
in the ocean floor. 
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These are the two possible waves with group velocities along the step, in the same 
sense as the phase of the respective trapped modes. 

The transition between types occurs at 

k = C O S C ~ / ~ ~ R .  

If 6 = 0.1 this is at  k 2: 10-8, 

or a wavelength of greater than 6000 km. p should not, therefore, affect the 
trapping in most cases, except in providing a small group velocity along the step. 

Higher modes over a step of Jinite width 
There is a family of waves, of smaller scale than the fundamental, over the 
sloping step in figure 5. With S < 1 and /3 neglected for simplicity (implying 
wkR % 1 where k is again the long slope wave-number), the matching of velocities 
at r,~ = 0, a gives the following relations: 

1 tan Qla = h for $ even about *a, 

1 cot &la = - h for $ odd about i a ,  

where l2 = - k2 + kS/aw, h2 = k2 

give the wave-number up the slope, and the decay constant outside the slope, 
respectively. 

These equations are of the form 

which are tabulated for q(r). The dispersion curves that result are given in figure 
12. The long wave limit leaves, as the only unsteady motion, the mode already 
calculated, w = &S (8 < 1). The figure shows that this mode has its group velocity 
always in the opposite sense to the phase velocity. For ka < 1 

fowk = - $foSu ( = - i k a  x (phase velocity)), 

independent of k. If a disturbance excites a set of such waves, all much longer 
than a, their form will move slowly and without dispersion along the step. Energy 
is carried a distance nSa in a day, which is not far unless 6 is substantial. The 
sense of the transport is to the right, for an observer facing shallow water. 

The frequencies of the higher modes go to zero with ka, but they are still 
important. With ku+ 0, $,-to at the edges of the step, r , ~  = ~f: *a, and the 
eigenvalues are simply 

6ka 
2n 

6ka 

w = -( l,*, ...) 

= - (1, &, ...) ($ odd). 
R 
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The topography is then a non-dispersive wave guide. The group velocity may 
exceed that of the fundamental mode (and is in the opposite direction): 

=f@ (I,+, ...) ($odd). 
7r 

With a = 100 km and 6 = 0.2, c < 64 cm/sec and hence even the lower 
frequency modes may be efficient carriers of energy, in the face of non-linearities. 

Even modes Odd modes 

FIGURE 12. Dispersion relation and form of @ for oscillations over a sloping step. 

The low frequency limit supplies the motions that would occur in the wake of 
an obstacle over a slope or sloping step, with a slow current. AS 0-+0 energy 
moves along the contours to the left (looking up the slope), drawing out the wake 
in this direction. In  the same way, a slowly moving forcing effect will draw or 
push water along the contours to the left, but not to the right, as Lighthill 
(1967) showed for the predominantly westward influence that occurs in a 
constant depth ocean. 

If a step is terminated laterally (perpendicular t o  the depth contours) by 
walls, or is cut off, an argument similar to that on page 177 indicates that energy 
can pile up and be dissipated at the left end (facing shallow water, in the northern 
hemisphere). One might, for example, find especially vigorous eddying at  
terminations along continental rises or the Mendocino Escarpment. 

Longuet-Higgins ( 1968 a, b )  has extended these results to include free-surface 
divergence. The effect is rather unimportant unless the wavelength approaches 
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11,000 km, say for H = 3 km. The frequency of longer waves is then lowered 
since the raising of the free surface due to  an upslope motion opposes spin-down. 
The modifications due to p often will occur before divergence is important. 

Trapping over a ridge 
Waves trapped over a ridge, with the same depth at either side, may be quite 
different. Thinking of the profile as two opposing steps, we see that the phase 
tends to move in opposite directions on the two sides, and expect some cancella- 
tion. With R = 00 again, for simplicity, we set the incident wave to zero in the 
equations that dealt with the ‘abrupt’ ridge: 

h = H(1-8) (0  < 7 < a) 
= H  (elsewhere) 

and solve for the dispersion relation implied by the homogeneity of the matching 
equations. This gives = as(1- exp [- 2 1 k I 
or w x 8 ( g I k l a ) h  for I k l u < l .  

The waves may move in either direction along the ridge, but their form is 
lopsided in favour of the side over which the phase moves with deep water to the 
left. The frequency is lower than in earlier examples, but k can easily be large 
enough to ‘separate’ the two sides. The group velocity along the ridge is 

in the same sense as the phase velocity. A narrow ridge is dispersive, the group 
velocity approaching one-half the phase velocity for small ka. This calculation 
shows the nature of the long wave; a large ridge with sloping faces will support 
higher modes, as in the preceding section. 

f w k  = +@aexp [ - 2 I k I a]  (1 - exp [-  2 I k /a])+, 

Non-linear behaviow 
The most vulnerable assumption made so far is that the spin-up of a column of 
fluid is well represented by a balance at a point fixed in space. The measure of 
non-linearities is usually taken to be the Rossby number, B = UlfL,  where U and 
L are typical velocity- and length-scales of the motion, respectively, but this 
applies only to the momentum equation, which is dominated by the geostrophic 
balance whether the vorticity equation is linear or not. We here require eIw, a 
measure of the wave steepness (horizontal displacement + wavelength) to be 
small. Since w is the fundamental small parameter for the problem, there is a 
class of quasi-steady geostrophic motions which overlaps with our interest. 

Scale analysis is of little help, since we have little prior knowledge of the 
appropriate L. For isolated profiles treated so far, the preservation of frequency 
meant that fluid was strongly deflected and the advection of vorticity reduced. 
For a step, in fact, the upslope velocity is smaller than that in the exterior by a 
factor of order TI*, although the length scale is also reduced. The results imply 

E U(O)t, 
w fow 
- N- 
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which is somewhat better than a t  first sight; if w = lO-l, k = lO-*cm-l, 
a = 106cm 

8 

w 
- N 1W2U (cmlsec), 

which should often be small. 
When we come to treat continuously varying topography, this contrast in 

lengths is not as strong, and fluid will cross contours at  large angles, raising elm. 
There is, however, comfort to be found in the basic vorticity theorems. Suppose, 

FIGURE 

1 

13. Contour for determining non-linear reflexion by a step. 

for example, the motion takes place over roughness of small scale, L,, in the sea 
floor. If UlwfL,  $- 1 the flow is locally irrotational (to the extent that the fluid 
is inviscid and homogeneous), and the streamlines are compressed only near the 
bottom. If UlfL, < 1, UlwfLR B 1 the field is two-dimensional, with some 
advection of vorticity, depending on the extent to which the steady flow may 
move along contours. The effect of vortex stretching, in this case, is limited since 
the circulation about a large contour of fluid particles (yet small, still, on the 
wave scale), and hence the net vorticity inside it, must not change in time, if the 
average depth within the contour is always the same; again it is the net change 
in depth that counts. The intermediate cases, when Taylor columns begin to 
grow above obstacles, or alternatively when U l f d R  N 1, are not well under- 
stood, but one hopes that they are the logical bridges between the extremes. 

The effect of isolated one-dimensional features can, it turns out, be predicted 
for highly non-linear motions. Bretherton (private communication) has pointed 
out that the matching condition for the velocities over a step can be found by 
applying Kelvin’s theorem to a block of fluid straddling the contours of depth, 
as shown in figure 13. It must be assumed that velocities change very slowly 
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along the step (in the 6 direction): that is, on the scale comparable to a wave- 
length. The fluid forced up the slope satisfies 

(hv), M 0. 

If a line of particles in deeper water moves a distance normal to the step Y ,  this 
is magnified slightly, to Y (1 + 6 )  on the other side ( Y may be much greater than 
u, the step width). The circulation, I?, about a rectangle of length L parallel to 
the slope, and width qz - ql, is initially 

(u1- u2) L 
where the subscripts 2 and 1 refer to the shallow and deep sides, respectively. 
As the block moves it is distorted by vortex stretching over the step, but as long 
as a/a[ < l / a ,  and with the contour broad enough so that it always spans the 

where dS is' a:planelhorizontal element of fluid. If we ignore the change in f 
within the contour, 

and it follows that 
arpt = - fm/a t (r , -q , ) ,  

or 
D a (ul - u2) + f6v = 0. 

For matching to linear Rossby waves in the exterior this vortex sheet is essentially 
fixed in space, and it brings about the same amount of reflexion as in the case of 
infinitesimal displacements. The argument also secures the trapped wave 
solutions in the face of non-linearities. 

Without motion, a step in the depth divides two regions of different potential 
vorticity so that even when fluid from one side infringes greatly on the other 
it is still in a hostile environment. With a ridge that falls off to the same depth on 
each side, the potential vorticity at rest is the same everywhere but over the 
ridge. Slight displacement of this block of fluid due to small-amplitude Rossby 
waves produces long slope velocities in different directions on the slopes of 
different sign; this is the double vortex sheet found to be impenetrable if 
( k / l )  (S/w)2ka 9 1. If, however, columns of fluid traverse the ridge completely, 
one of the vortex sheets is swept downstream, like the 'starting vortex' due to 
an aerofoil, leaving the other bound to the ridge. This causes a net change in 
direction of the streamlines as they cross the ridge. The reader may see this 
behaviour demonstrated in the computer solutions of Kasahara (1966). 

Large, periodic displacements may again be treated with Kelvin's theorem. If 
the contour extends far outside the ridge, the same assumption that a/a( .g 1/a 
means that the normal velocities before and after the ridge are the same, 

and hence 
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and there is no reflexion at  all in this limit. The influence of the ridge will, in 
general, depend on the fraction of the block of fluid initially over the ridge that 
is moved off it by the wave motion. 

One-dimensional topography, h = h(y)  only, is special, in that geostrophic flow 
$(f /h)  cannot cross it. This is a linear (but singular) steady flow limit whereas 
the present case is fundamentally non-linear. 

Excitation of trapped waves 

The wind stress, T, at the surface is usually taken to act as a body force on the 
interior fluid, due to the convergence in quasi-steady, surface Ekman layers. 
Vorticity is thus produced a t  a rate I V A T  I/ph. The frequent appearance of 
these body forces in the momentum balance is unjustified, however, and with 
varying depth leads to a large, false forcing term, T/p A V(l/h); in the absence 
of lateral boundaries a stress constant in space will merely drive the Ekman 
layer at right angles, leaving the interior at rest. 

The trapped modes over steps and ridges cannot be forced at  resonance by 
Rossby waves in the exterior since the dispersion relations are mutually exclusive. 
If, however, there is a periodic wind stress ‘tweak’ forcing equation (3.1) at 7 = qo, 

near an abrupt step, where 6 = [h (0 - ) / h  (0 + )] - 1, and A(x) is the delta function, 
the response has a magnitude (at 7 = 0) 

The motion over the step drops exponentially with the distance of the ‘storm’, 
and linearly with the separation of natural and forcing frequencies. The ratio of 
G(E, 0, v0)  to the amplitude with 6 = 0 is just 2 [(6/oo) - (2 + a)]-l. The asym- 
metry of the response under a reverse in the direction of motion of the forcing 
agent (wo -+ - wo) is expected from the free wave results. In  the absence of 
resonant amplification (kq0 >> 1) the interior velocities are of order I T I/pHfowo. 

Applications 

In  summary of the wave guide nature of bunched contours, the largest-scale 
and highest-frequency modes have group velocity to the ‘right’ (if one faces 
shallow water), and their fringes may extend far from the topography. The 
modes with more structure have lower frequency and are confined near the 
topography. With rapid variation along the contours the group velocity points 
to the ‘left’; with gradual variation, to the ‘right’. A large-scale wind stress 
should thus excite high frequencies to its ‘right’ and low frequencies to its ‘left ’. 
Motions at  vanishingly low frequencies propagate away from a source faster than 
the rest, and so jet-like wakes extending along the contours to the ‘left’ of a 
moving disturbance may be expected. The Mid-Atlantic Ridge and its exten- 
sions, alone, provide many such wave guides (the longest waves over a ridge will 
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be affected by cancellation between the vortex sheets, but the shorter ones will 
not). 

The continental shelf is a likely site of trapped waves. They should dominate 
the quasigeostrophic spectrum, since few Rossby waves will penetrate the rim. 
The mode found by Robinson (1964) and Mysak (1967) has a scale along the 
coast, k-l, much greater than the width of the shelf, a (the essential physics was 
given by Reid (1956)). It resembles the slope (or sloping-step) waves found in 
$2. The appropriate limit is 1 @ k for which w N ka, since 1 N l /a,  M N l /a .  This 
wave guide is, again, non-dispersive, the energy travelling a distance - 27ra in 
a day. 

The present results show that in addition there is a wave of much higher 
frequency (w M 6/(2 + 6) M 1) and also a family of dispersive waves with w 5 ka 
over the steep rim of the shelf. When k-l is extremely large the high-frequency 
motion becomes a Kelvin wave, since free surface motion is then important. The 
group velocity of the lower-frequency waves carries them, typically, 2n- rim- 
widths in a day. This should thus be a region of tempestuous motions, and, the 
smaller their scale, the more they will be correlated with nearby conditions. 

Friction and advection will quickly destroy the waves; viscous spin-down 
should take only a few days, especially in the shallow water over the shelf. The 
mode found by Robinson is, however, the one quasigeostrophic wave that has 
been observed with some certainty: see Hamon (1966). 

4. Conclusions 
The measure of topographic effects on slow oscillations is not 6, but S/w (for a 

step), 6R/a = M R  (slope), or (6/w)(ka)) (narrow ridge). A step acts like a single 
vortex sheet to the external field, a ridge like a double sheet (recall that with a 
steady current a ridge produces a single vortex sheet). In  a smoothly sloping 
ocean basin of scale L, quasigeostrophic waves will often rely on topography 
rather than ,I3 (when L/R < 1). Qualitative experiments demonstrating the 
reflexion off ridges are reported in Rhines (1967). 

Short waves (ka % 1) trapped along bunched contours of f / h  should be an 
especially vigorous feature of the ocean, for their group velocity is small. If 
ka < 1 energy may be guided more efficiently (at velocities 5 fo6a/n for a step). 
The limit w-+ 0 shows that blocking effects propagate rapidly to the left, looking 
up the slope. 

It was predicted that few Rossby waves will penetrate the continental rise. 
Some confirmation is given by Wunsch (1967), reported at  the time of this 
writing. He found that Rossby waves, generated by fortnightly and monthly 
tidal potentials, are somewhat evident at island stations, yet in six records at  
the American west coast just one peak appeared above the noise. The result is 
not in conflict with the active low-frequency spectra generally seen at  coastal 
tide gauges. Topographic waves generated locally, when fluid is forced at  the 
coast by wind stress, could account for these observations. 

Some effects neglected here will be treated in succeeding papers. The first, 
density stratification, sometimes lessens the influence of topography, and a new 
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kind of trapped wave appears. We have ignored any curvature of the depth 
contours: a study with circular contours showsthat trapped waves exist about an 
arbitrarily small island. At the same time Rossby waves easily penetrate to the 
shore, which helps to explain Wunsch’s successful observations. Waves over a 
continuously rough bottom are a more difficult problem, but generalizations of 
the trapped waves found here do exist. 

The author would like to acknowledge the great influence that Dr F. P. 
Bretherton of Cambridge has lent this work, and the kind support of the Marshall 
Commission of London during his stay in England. The work was summarized 
at the La Jolla I.U.T.A.M. symposium on rotating fluid systems, 1966 (see 
Bretherton, Carrier & Longuet-Higgins 1966). It was rewritten at M.I.T. under 
National Science Foundation grant GA 1439. 
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